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Abstract: The control of the loading crane in the classic method is based on the motion of individual kinematic pairs by 
changing the position of the valves of hydraulic cylinders. This article presents control methods for controlling the position 
of a loading crane end effector in Cartesian coordinates. The described mathematical models and simulation studies of the 
developed crane control algorithms have been implemented in the Matlab Simulink environment.

Modelowanie kinematyki żurawia przeładunkowego o redundantnej strukturze kinematycznej

Słowa kluczowe: kinematyka odwrotna, metoda Jakobianu odwrotnego, żuraw przeładunkowy.

Streszczenie: Sterowanie żurawiem przeładunkowym w klasyczny sposób polega na zadawaniu ruchu w poszczególnych 
parach kinematycznych konstrukcji nośnej za pomocą zmiany położenia zaworów kolejnych siłowników. W niniejszym artykule 
przedstawiono sposoby sterowania umożliwiające kontrolę ruchu końcówki roboczej żurawia przeładunkowego we współrzęd-
nych kartezjańskich.  Omawiane modele matematyczne oraz badania symulacyjne opracowanych algorytmów sterowania żu-
rawiem zaimplementowano w środowisku Matlab Simulink.

Introduction

Loading cranes constitute a large branch of the 
crane	industry.	It	is	very	common	to	integrate	a	transport	
vehicle	 with	 a	 loading	 crane.	 Therefore,	 the	 truck	
driver	 should	have	 the	appropriate	authority	and	ability	
to	 operate	 the	 lifting	 devices.	 Efficient	 control	 of	 the	
automobile	 crane	 requires	 the	 operator	 to	 have	 a	 lot	 of	
practice	and	experience.	The	classic	control	system	that	
is	 used	 for	 handling	 cranes	 is	 the	 control	 of	 individual	
arm	joints	using	separate	control	levers	(control	in	joint	
space)	[1].	Most	loading	cranes	are	serial	structures	with	
a	redundant	number	of	degrees	of	freedom	[2].	Figure	1	
shows	an	example	of	a	loading	crane.	Analysed	HDS	has	
nine	degrees	of	freedom.	Three	of	them	are	rotational	and	
the rest of degrees are translational due to the application 
of	the	telescopic	arm	in	the	construction	of	the	crane.	

The control of the telescopic arm extensions is 
done using coupled actuators according to one of three 
strategies:	synchronous,	sequential,	or	arbitrary	(random)	
movement.	 	 The	 work,	 according	 to	 the	 first	 strategy,	

consists	 in	 lifting	 all	 telescopic	 links	 simultaneously.	
According	 to	 the	 second	 strategy,	 only	 one	 link	 in	
sequential	order	extends	at	a	given	time.	According	to	the	
third	strategy,	depending	on	the	configuration	and	friction	
forces,	a	randomly	selected	link	extends	at	a	given	time.	
In	this	study,	a	crane	with	a	sequential	output	system	was	
considered.

Fig. 1. Loading crane Hiab HS 111 in base position

The control of the loading crane must take into 
account	the	need	to	carry	the	load	over	an	obstacle	[2,	
3],	for	example,	the	walls	of	buildings.	One	of	the	many	
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problems encountered during controlling a load with 
HDS	is	the	possibility	of	exceeding	the	safety	zone	for	
manipulating	the	load	of	a	given	weight.	The	design	of	
the	 crane	 security	 system	 requires	 the	development	 of	
a control system to calculate the position of the hook 
relative	 to	 the	 truck	 [3,	 4,	 5].	 This	 article	 provides	
a mathematical description of simple kinematics and 
how	 to	 solve	 the	 problem	 of	 inverse	 kinematics	 of	
loading	crane.	For	the	considered	construction	of	crane,	
the results of the simulation studies in the Matlab 
program	are	also	presented.

1. Mathematic model of loading crane

1.1. Simple kinematics model

The mathematical model of simple kinematics 
has	been	developed	based	on	 the	Denavit-Harteneberg	
notation	[6].	A	model	with	nine	degrees	of	freedom	was	
considered.	Figure	2	shows	the	location	of	the	coordinate	
system	of	the	loading	crane	at	base	position.

Based on location of coordinate systems presented 
in	Figure	2,	a	relation	(1)	describing	the	position	of	the	
crane	tip	with	respect	to	its	base	was	developed:
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between	individual	links.

1.2. Model of extension

The arm extension model was described according 
to	 the	 sequential	 motion	 convention.	 Extending	
successive	links	is	described	in	an	iterative	way	with	the	
following	equation	(2):
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where 
Di	–		length	of	the	i-th	link	extension,
Li –  maximum distance of link end from the point B 

(see	Fig.	2).

Fig. 2.  Location of coordinate systems according to notation Denavita-Hartenberg for the crane with 9 degrees of freedom 
in base position
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Parameters	used	in	the	model	are	presented	in	Table	1.	
The	telescopic	arm	diagram	is	shown	in	Figure	2.

Table 1. Parameters of the telescopic arm

i Di
(mm)

Li 
(mm)

0 0 2706
1 1650 4356
2 1900 6256
3 2000 8256
4 1200 9456
5 2100 11556
6 2100 13656

1.3. Velocity Jacobian of Loading Crane

Based on the matrix of homogeneous 
transformations	 for	 the	 simplified	 model,	 velocity	
Jacobian was determined according to the following 
formula:
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Linear	 and	 angular	 velocities	 dependent	 on	 the	
speed of the rotation of kinematic rotational pairs are 
given	by	the	following	equations	(4–5):
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For	 a	 prismatic	 joint,	 velocities	 are	 determined	

according	to	equations	(6)	and	(7).
  

J zv4 4=                          (8)                        

jω4 0=                                   (9)

1.4. Inverse kinematics model

The reloading crane is a nine-degree redundancy 
system	that	can	be	simplified	to	a	four-degree	freedom	
device	 by	 replacing	 six	 collinear	 prismatic	 joints	with	
one	based	on	dependence	(2).	In	spite	of	the	reduction	

of	degrees	of	freedom	for	the	manipulator	with	a	given	
kinematic	 structure	 (Fig.	 2),	 we	 did	 not	 get	 a	 clear	
solution.	In	order	to	achieve	an	unambiguous	solution,	
one	of	several	methods	known	in	the	literature	[2]	and	
[7]	should	be	used.	For	the	control	of	the	loading	crane,	
the	most	effective	control	methods	are	as	follows:
a.		 Control	 with	 blocking	 certain	 kinematic	 pairs	 in	

order	 to	 achieve	 the	 manipulator	 characterized	 by	
fewer	degrees	of	freedom,	and

b.		 Control	using	the	inverse	Jacobian	control	method.

1.4.1.  Inverse kinematics model

Controlling	the	4-DOF	manipulator	by	setting	the	
XYZ	 coordinates	 is	 not	 straightforward	 therefore,	 to	
obtain	a	clear	solution,	we	block	one	of	the	three	degrees	
of freedom (θ2, θ3, d4).	 For	 the	 loading	 crane,	 three	
models	of	inverse	kinematics	were	obtained:
a.		Model	1	–	blocked	extension	of	the	4th axis (d4	=	const),
b.		Model	2	–	blocked	rotation	of	the	3rd	axis	(θ3	=	const),	

and
c.		Model	3	–	blocked	rotation	of	the	2nd	axis	(θ2	=	const).

For	 each	 of	 the	 three	 models,	 the	 angle	 of	 the	
column	(first	link)	rotation	is	calculated	according	to	the	
following	formula	(10):
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where 
x, y	–	the	crane	tip	coordinates,	
θ1			–	configuration	angle	of	the	1

st	link.

The	position	of	the	crane	tip	relative	to	point	A	(see	
Fig.	2)	is	described	by	equations	(11–13):

  
XA = X	cos	(θ1) + Y sin	(θ1) + a2										(11)

YA = –X	sin	(θ1) + Y cos	(θ1) – d3								(12)

ZA = Z – a1																												(13)
  

where 
Z	–	coordinate	of	the	working	tip	of	the	crane.

The	 calculation	 of	 the	 consecutive	 values	 of	 the	
configuration	 coordinates	 for	 each	 model	 is	 done	 by	
a	 separate	 algorithm.	 The	 configuration	 coordinates	
for	 the	 1st inverse	 kinematics	model	 (d4 = const) were 
described	by	formulas	(14–17):	

  
                 R X YA A= +2 2
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The	 configuration	 coordinates	 for	 the	 2nd inverse	
kinematics	 model	 (θ3 = const) were described by 
formulas	(18–25):	
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Next,	 for	 the	 3rd	 inverse	 kinematics	 model	 
(θ2	 =	 const),	 the	 position	 of	 Point	 B	 (see	 Fig.	 2)	was	
obtained	by	equations	(26–28):

  
                X X aB A= − ( )3 2cos θ 																					(26)

                            Y YB A= 																																(27)

Z Z aB A= − 3 2sin( )θ 																(28)

Finally,	the	configuration	coordinates	(29–30)	were	
determined:
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1.4.2.  Inverted Jacobian method
Calculating	the	position	of	successive	joints	while	

moving	on	a	given	trajectory	can	also	be	accomplished	
by	 applying	 the	 following	 equation	 (31).	The	 pseudo-
inverse	Moore-Penrose	matrix	 is	used	in	 the	presented	
dependence	(33).
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By	 integrating	 the	 equation	 (33),	 we	 obtain	
a	 relation	 (34)	 describing	 the	 change	 of	 configuration	
variables	at	the	assumed	starting	point.

  
                                                    (34)

2. Results of the analysis 

Figure	 3	 show	 the	 values	 of	 the	 configuration	
coordinates	while	the	end	effector	move	after	a	straight	
line from Point P1 (X	 =	 4000	 mm,	 Y	 =	 2000	 mm,	 
Z	=	500	mm)	to	Point	P2	(X =	7000,	Y =	–2000	Z =	4000).	
The	duration	of	the	motion	is	100	s.

Controlling a loading crane with Cartesian 
coordinates is an ambiguous issue due to redundant 
degrees	 of	 freedom,	 although	 the	 use	 of	 a	 temporary	
blocking	of	one	of	the	configuration	coordinates	allows	
for	efficient	control	of	the	crane.	The	proposed	approach	
involves	 the	 alternate	 use	 of	 three	 inverse	 kinematics	
models	of	the	crane.	The	choice	of	the	inverse	kinematics	
model	 of	 the	device	 is	 based	on	 the	 limitations	of	 the	
working	space	and	the	motion	ranges	of	the	individual	
joints.	 Switching	 between	 operating	 modes	 can	 be	
performed	 automatically	 or	 forced	 manually.	 During	
the	controlling	of	 the	position	of	 the	XYZ	work	 tip,	 it	
is	 possible	 to	 change	 the	 position	 of	 the	 locked	 joint.	
Thus,	we	get	the	ability	to	control	with	four	coordinates,	
i.e.	 XYZ	 and	 the	 position	 of	 the	 limited	 joint.	 This	
approach	 is	 required	 to	 achieve	 a	 configuration	 that	
allows	 you	 to	 bypass	 an	 obstacle.	As	 a	 result	 of	 the	
work,	we	have	obtained	the	algorithm	of	switching	the	
inverse	kinematics	modes	and	the	limits	of	movement	of	
individual	crane	joints	(movement	ranges).	

J v t dtθ θ( ) ( ) + ( ) t0θ(t)	=	∫
t
t0

.

J(θ)ϯ	= 

ϯ
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Fig. 3. Value of the configuration coordinates determined using inverse kinematics models with locking joints and the 
inverse Jacobian method 

Conclusions

The paper describes a methodology of modelling 
a	simple	and	inverse	kinematic	of	a	loading	crane	with	
a	 redundant	 structure.	The	 obtained	 equations	 enable	
controlling	the	crane	workpiece	in	a	Cartesian	system,	
regardless	 of	 its	 configuration.	 The	 use	 of	 inverse	
kinematics to control the loading crane restricts the 
crane	movement	in	a	specific	direction	with	respect	to	
the	 truck.	 This	 becomes	 extremely	 important,	 as	 the	
loading	cranes	must	meet	the	relevant	safety	standards	
[1].	The	paper	shows	how	to	model	simple	and	inverse	
kinematics.	 Thanks	 to	 the	 presented	 approach,	 it	 is	
possible to easily modify the system and to expand the 
model with further modules such as dynamic models 
and	hydraulic	models	of	crane	cylinders.
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