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Abstract: The control of the loading crane in the classic method is based on the motion of individual kinematic pairs by 
changing the position of the valves of hydraulic cylinders. This article presents control methods for controlling the position 
of a loading crane end effector in Cartesian coordinates. The described mathematical models and simulation studies of the 
developed crane control algorithms have been implemented in the Matlab Simulink environment.

Modelowanie kinematyki żurawia przeładunkowego o redundantnej strukturze kinematycznej

Słowa kluczowe: kinematyka odwrotna, metoda Jakobianu odwrotnego, żuraw przeładunkowy.

Streszczenie: Sterowanie żurawiem przeładunkowym w klasyczny sposób polega na zadawaniu ruchu w poszczególnych 
parach kinematycznych konstrukcji nośnej za pomocą zmiany położenia zaworów kolejnych siłowników. W niniejszym artykule 
przedstawiono sposoby sterowania umożliwiające kontrolę ruchu końcówki roboczej żurawia przeładunkowego we współrzęd-
nych kartezjańskich.  Omawiane modele matematyczne oraz badania symulacyjne opracowanych algorytmów sterowania żu-
rawiem zaimplementowano w środowisku Matlab Simulink.

Introduction

Loading cranes constitute a large branch of the 
crane industry. It is very common to integrate a transport 
vehicle with a loading crane. Therefore, the truck 
driver should have the appropriate authority and ability 
to operate the lifting devices. Efficient control of the 
automobile crane requires the operator to have a lot of 
practice and experience. The classic control system that 
is used for handling cranes is the control of individual 
arm joints using separate control levers (control in joint 
space) [1]. Most loading cranes are serial structures with 
a redundant number of degrees of freedom [2]. Figure 1 
shows an example of a loading crane. Analysed HDS has 
nine degrees of freedom. Three of them are rotational and 
the rest of degrees are translational due to the application 
of the telescopic arm in the construction of the crane. 

The control of the telescopic arm extensions is 
done using coupled actuators according to one of three 
strategies: synchronous, sequential, or arbitrary (random) 
movement.   The work, according to the first strategy, 

consists in lifting all telescopic links simultaneously. 
According to the second strategy, only one link in 
sequential order extends at a given time. According to the 
third strategy, depending on the configuration and friction 
forces, a randomly selected link extends at a given time. 
In this study, a crane with a sequential output system was 
considered.

Fig. 1. Loading crane Hiab HS 111 in base position

The control of the loading crane must take into 
account the need to carry the load over an obstacle [2, 
3], for example, the walls of buildings. One of the many 
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problems encountered during controlling a load with 
HDS is the possibility of exceeding the safety zone for 
manipulating the load of a given weight. The design of 
the crane security system requires the development of 
a control system to calculate the position of the hook 
relative to the truck [3, 4, 5]. This article provides 
a mathematical description of simple kinematics and 
how to solve the problem of inverse kinematics of 
loading crane. For the considered construction of crane, 
the results of the simulation studies in the Matlab 
program are also presented.

1. Mathematic model of loading crane

1.1. Simple kinematics model

The mathematical model of simple kinematics 
has been developed based on the Denavit-Harteneberg 
notation [6]. A model with nine degrees of freedom was 
considered. Figure 2 shows the location of the coordinate 
system of the loading crane at base position.

Based on location of coordinate systems presented 
in Figure 2, a relation (1) describing the position of the 
crane tip with respect to its base was developed:
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between individual links.

1.2. Model of extension

The arm extension model was described according 
to the sequential motion convention. Extending 
successive links is described in an iterative way with the 
following equation (2):
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where 
Di – 	length of the i-th link extension,
Li – 	maximum distance of link end from the point B 

(see Fig. 2).

Fig. 2. 	 Location of coordinate systems according to notation Denavita-Hartenberg for the crane with 9 degrees of freedom 
in base position
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Parameters used in the model are presented in Table 1. 
The telescopic arm diagram is shown in Figure 2.

Table 1. Parameters of the telescopic arm

i Di
(mm)

Li 
(mm)

0 0 2706
1 1650 4356
2 1900 6256
3 2000 8256
4 1200 9456
5 2100 11556
6 2100 13656

1.3. Velocity Jacobian of Loading Crane

Based on the matrix of homogeneous 
transformations for the simplified model, velocity 
Jacobian was determined according to the following 
formula:
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Linear and angular velocities dependent on the 
speed of the rotation of kinematic rotational pairs are 
given by the following equations (4–5):
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For a prismatic joint, velocities are determined 

according to equations (6) and (7).
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1.4. Inverse kinematics model

The reloading crane is a nine-degree redundancy 
system that can be simplified to a four-degree freedom 
device by replacing six collinear prismatic joints with 
one based on dependence (2). In spite of the reduction 

of degrees of freedom for the manipulator with a given 
kinematic structure (Fig. 2), we did not get a clear 
solution. In order to achieve an unambiguous solution, 
one of several methods known in the literature [2] and 
[7] should be used. For the control of the loading crane, 
the most effective control methods are as follows:
a. 	 Control with blocking certain kinematic pairs in 

order to achieve the manipulator characterized by 
fewer degrees of freedom, and

b. 	 Control using the inverse Jacobian control method.

1.4.1.  Inverse kinematics model

Controlling the 4-DOF manipulator by setting the 
XYZ coordinates is not straightforward therefore, to 
obtain a clear solution, we block one of the three degrees 
of freedom (θ2, θ3, d4). For the loading crane, three 
models of inverse kinematics were obtained:
a. 	Model 1 – blocked extension of the 4th axis (d4 = const),
b. 	Model 2 – blocked rotation of the 3rd axis (θ3 = const), 

and
c. 	Model 3 – blocked rotation of the 2nd axis (θ2 = const).

For each of the three models, the angle of the 
column (first link) rotation is calculated according to the 
following formula (10):
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where 
x, y – the crane tip coordinates, 
θ1   – configuration angle of the 1

st link.

The position of the crane tip relative to point A (see 
Fig. 2) is described by equations (11–13):

		
XA = X cos (θ1) + Y sin (θ1) + a2          (11)

YA = –X sin (θ1) + Y cos (θ1) – d3        (12)

ZA = Z – a1                            (13)
		

where 
Z – coordinate of the working tip of the crane.

The calculation of the consecutive values of the 
configuration coordinates for each model is done by 
a separate algorithm. The configuration coordinates 
for the 1st inverse kinematics model (d4 = const) were 
described by formulas (14–17): 
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The configuration coordinates for the 2nd inverse 
kinematics model (θ3 = const) were described by 
formulas (18–25): 
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Next, for the 3rd inverse kinematics model  
(θ2 = const), the position of Point B (see Fig. 2) was 
obtained by equations (26–28):

		
                X X aB A= − ( )3 2cos θ                      (26)

                            Y YB A=                                 (27)

Z Z aB A= − 3 2sin( )θ                 (28)

Finally, the configuration coordinates (29–30) were 
determined:
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1.4.2.  Inverted Jacobian method
Calculating the position of successive joints while 

moving on a given trajectory can also be accomplished 
by applying the following equation (31). The pseudo-
inverse Moore-Penrose matrix is used in the presented 
dependence (33).
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By integrating the equation (33), we obtain 
a relation (34) describing the change of configuration 
variables at the assumed starting point.

		
                                                    (34)

2. Results of the analysis 

Figure 3 show the values of the configuration 
coordinates while the end effector move after a straight 
line from Point P1 (X = 4000 mm, Y = 2000 mm,  
Z = 500 mm) to Point P2 (X = 7000, Y = –2000 Z = 4000). 
The duration of the motion is 100 s.

Controlling a loading crane with Cartesian 
coordinates is an ambiguous issue due to redundant 
degrees of freedom, although the use of a temporary 
blocking of one of the configuration coordinates allows 
for efficient control of the crane. The proposed approach 
involves the alternate use of three inverse kinematics 
models of the crane. The choice of the inverse kinematics 
model of the device is based on the limitations of the 
working space and the motion ranges of the individual 
joints. Switching between operating modes can be 
performed automatically or forced manually. During 
the controlling of the position of the XYZ work tip, it 
is possible to change the position of the locked joint. 
Thus, we get the ability to control with four coordinates, 
i.e. XYZ and the position of the limited joint. This 
approach is required to achieve a configuration that 
allows you to bypass an obstacle. As a result of the 
work, we have obtained the algorithm of switching the 
inverse kinematics modes and the limits of movement of 
individual crane joints (movement ranges). 

J v t dtθ θ( ) ( ) + ( ) t0θ(t) = ∫
t
t0

.
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Fig. 3. Value of the configuration coordinates determined using inverse kinematics models with locking joints and the 
inverse Jacobian method 

Conclusions

The paper describes a methodology of modelling 
a simple and inverse kinematic of a loading crane with 
a redundant structure. The obtained equations enable 
controlling the crane workpiece in a Cartesian system, 
regardless of its configuration. The use of inverse 
kinematics to control the loading crane restricts the 
crane movement in a specific direction with respect to 
the truck. This becomes extremely important, as the 
loading cranes must meet the relevant safety standards 
[1]. The paper shows how to model simple and inverse 
kinematics. Thanks to the presented approach, it is 
possible to easily modify the system and to expand the 
model with further modules such as dynamic models 
and hydraulic models of crane cylinders.
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