
QUARTERLY
ISSN 1232-9312 3/2017 (106)

PROBLEMY  EKSPLOATACJI  

Journal of Machine
C o n s t r u c t i o n 
and Maintenance

Janusz CHRZANOWSKI, Bohdan BIEG
Maritime University of Szczecin
Faculty of Marine Engineering
Waly Chrobrego 1-2, 70-�00 Szczecin, Poland
j.chrzanowski@am.szczecin.pl; b.bieg@am.szczecin.pl

THE  APPLICATION  OF  ANGULAR  VARIABLE  TECHNIQUE  TO  PLASMA 
POLARIMETRY

Key words: plasma, polarimetry, AVT.

Abstract: An efficient theory of the polarization state evolution of electromagnetic wave at the magnetized plasma is presented. 
Angular variable technique (AVT), developed on the basis of quasi-isotropic approximation (QIA) of geometrical optics, 
describes both quasi-longitudinal propagation (Faraday Effect) and quasi-transverse propagation (Cotton-Mouton effect), even 
in the case when both effect combine nonlinearly. It could be used as a theoretical background for a polarimetric diagnostic of at 
any type laboratory or interstellar plasma as long as the conditions of weak anisotropy and weak inhomogeneity are fulfilled. As 
an example, equations of AVT are applied to magnetized plasma with parameters typical for magnetic fusion devices.  

Zastosowanie metody zamiennych kątowych w polarymetrii plazmy

Słowa kluczowe: plazma, polarymetria, AVT.

Streszczenie: W artykule przedstawiona jest teoria ewolucji stanu polaryzacji fali elektromagnetycznej w niejednorodnym 
ośrodku, jakim jest plazma znajdująca się w polu magnetycznym. Prezentowana technika zmiennych kątowych (AVT) została 
opracowana na podstawie przybliżenia quasi-izotropowego (QIA) optyki geometrycznej. Opisuje ona zmiany polaryzacji zarów-
no w przypadku propagacji równoległej do pola magnetycznego (efekt Faradaya), jak i propagacji poprzecznej (efekt Cotton-
-Moutona). Umożliwia również interpretację pomiaru polarymetrycznego, w przypadku gdy oba efekty są istotne i oddziałują ze 
sobą nieliniowo. Proponowany formalizm może stanowić podstawę teoretyczną diagnostyki polarymetrycznej dla dowolnego 
typu plazmy, o ile spełnione są warunki słabej anizotropii i słabej niejednorodności. Równania AVT zastosowano do namagne-
sowanej plazmy o parametrach występujących we współczesnych reaktorach termojądrowych.

Introduction

It	is	well	known	fact	that	more	than	99,9%	of	the	
matter	 in	 the	universe	 is	 in	 the	form	of	plasma,	which	
is	the	fourth	state	of	matter	after	solid,	liquid,	and	gas.	
The	natural	sources	of	plasma	are	the	stars,	atmosphere,	
lightings,	 and	 gaseous	 nebula.	 Nevertheless,	 various	
types of plasma are created in laboratories for different 
applications,	which	include	arcs,	gaseous	discharge,	laser	
produced	 plasma,	 and	 recently	 the	 most	 importantly,	
tokamak	 plasma.	 These	 plasma	 sources	 might	 have	
various	 applications	 in	 different	fields	 of	 research	 and	
industry.	 Typical	 plasma	 parameters	 cover	 dozens	

orders	of	magnitude:	size	–	10–6	m	(lab	plasma)	–	1025	m 
(intergalactic	 nebula),	 density	 –	 1m–3 (intergalactic 
medium)	–	1035	m–3	(white	dwarfs),	temperature	–	~0	K	
(intergalactic	plasma)	–	109K	(fusion	plasma)	 (Fig.	1),	
lifetime	 –	 10–12	 s	 (laser-produced	 plasma)	 –	 1017	 s 
(intergalactic	 plasma),	 magnetic	 field	 –	 10–4	 T (lab 
plasma)	–	1011	T	(near	neutron	stars).	

There are many methods for studying such 
a	 diverse	 medium,	 but	 one	 of	 the	 most	 important	 is	
polarimetry.	This	method	 is	 based	 on	 the	 fact	 that	 for	
high-frequency	 electromagnetic	 waves	 plasma,	 in	 the	
presence	 of	 a	 magnetic	 field,	 becomes	 a	 birefringent	
and	optically	active	medium	with	strong	dependence	on	
plasma	 density	 and	magnetic	 field.	As	 a	 consequence	
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the	measurement	 of	 changes	 in	 the	 wave	 polarization	
during	its	propagation	into	plasma,	it	provides	valuable	
information	 on	 plasma	 density	 and	 magnetic	 field.	
Especially	the	last	one	is	very	important,	as	polarimetry	
is one of the few techniques to measure the magnetic 
field	 in	 the	 interior	of	 the	plasma.	Usually,	 the	change	
in the polarization state is considered in two separate 
cases	[2,	3].	The	first	one	take	place	when	propagation	
direction	is	parallel	 to	 the	magnetic	field,	so	plasma	is	
optically	 active	 and	 imposes	 the	 Faraday	 Effect	 (F).	
The	polarization	ellipse	(and,	for	linear	polarization,	the	
polarization	 plane)	 rotates,	 with	 a	 constant	 ellipticity,	
so	 only	 its	 orientation	 changes	 (Fig.	 2a).	 The	 second	
one is for propagation perpendicular to the magnetic 
field,	so	plasma	is	purely	birefringent	and	imposes	 the	
Cotton-Mouton	effect	(CM).	In	this	case,	the	ellipticity	
of the polarization ellipse is changing with a constant 
polarization	plane	(Fig.	2b).

components	 with	 respect	 to	 the	 wave	 propagation	
direction.	 It	 complicates	 the	 interpretation	 of	
polarimetry	 measurements,	 especially	 when	 F	 and	
CM	effects	 are	 strong	 	 [2,	 3]	 and	more	 sophisticated	
treatment	is	indispensable.	Here,	we	present	the	theory	
of	 electromagnetic	 wave	 polarisation	 state	 evolution	
in heterogeneous magnetized plasma for any coupling 
between	F	and	CM	effect.	The	only	restriction	is	weak	
anisotropy and weak inhomogeneity of the analysed 
medium.	

The	paper	is	organised	as	follows:	Section	2	outlines	
the basic equations of quasi-isotropic approximation and 
derives	AVT	 equations	 in	 (ψ,	 δ)	 from	QIA	 equations.	
Section	 3	 rewrites	AVT	 equations	 in	 the	 case	 of	 cold	
plasma	 approximation.	 Section	 4	 analyses	 the	 choice	
of	 the	 appropriate	 wavelength	 of	 the	 beam	 applied	 at	
polarimetric diagnostic with the use of an example of 
modern	tokamak	plasma	conditions.

1. Polarization state evolution

It is commonly accepted to characterize an 
electromagnetic	wave	 traveling	along	 the	z axis as the 

vector	 sum	 of	 two	 harmonic	 electric	 fields	 Ex z t,( )  
and Exy z t,( ),	whose	directions	are	parallel	to	the	x and  
y axes	respectively:
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where  ex and  ey	are	unit	vectors	along	the	coordinate	
axis.	Γ	is	the	polarization	vector
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orthogonal to the beam propagation direction and 
dependent on the magnitudes E0 and phases δ of both 
complex components Ex and Ey.	For	 the	beam	passing	
through	 anisotropic	 medium,	 as	 plasma	 located	 at	
external	 magnetic	 field,	 its	 polarization	 state	 changes	
along	the	path.	An	adequate	method	for	the	description	
of	such	an	evolution	is	the	Budden’s	method	[4,	5],	and	
its	extension	–	the	quasi-isotropic	approximation	(QIA)	
[6,	7].	Both	methods	deal	with	coupled	wave	equations	
for	 the	 components	of	 the	 electromagnetic	wave	field.	
In the case of the quasi-isotropic approximation of the 
geometrical	 optics	method,	 basic	 assumptions	 are	 that	
the scale of medium inhomogeneity L is much larger 
than	the	beam	wavelength	 λ 

Fig. 1. Temperatures and densities of astrophysical and 
laboratory plasma [1]

Source:	Authors	based	on	[1].

a)

b)

Fig. 2.  The polarization ellipse change in Faraday (a) and 
Cotton-Mouton (b) effect

Source:	Authors.

The coupling between both effects appears when 
the	magnetic	field	has	both	parallel	and	perpendicular	
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                        λ  L                              (3)	

(weak inhomogeneity condition) and that the full tensor 
of	 electrical	 permittivity	 of	 an	 anisotropic	 medium			
εmn could	 be	 divided	 into	 two	 parts:	 the	 electrical	
permittivity			ε0 of the isotropic background medium and 
the anisotropy tensor  vmn

          ε εmn mn mn= +0δ ν 																					(4)	

with components much smaller than ε0

       max[ mnν ε] 0                     (5)	

(weak	 anisotropy	 condition).	 According	 to	 [6,7],	 an	
asymptotic	 solution	 to	 Maxwell’s	 equation	 in	 small	

parameters µ λG L= /  and  µ ν ε
Α
= / ( )0max mn leads to 

the set of complex ordinary equations for the components   
Ex and  Ey of	the	polarization	vector:
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where k0	is	the	local	wave	number	of	the	electromagnetic	
beam.

Although	 the	 equations	 (6)	 fully	 describe	 the	
evolution	of	the	polarization	vector	along	the	trajectory,	
they	are	not	used	in	classical	polarimetry.	The	reason	is	in	
fact	that	the	equations	(6)	describe	the	evolution	of	both	
complex components Ex and  Ey and therefore of all four 
parameters,	Ex0,	Ey0,	δx,	and		δy of	the	polarization	vector.	
In	contrast,	polarimetric	systems	usually	measure	only	
the amplitude ratio Ey0/Ex0 and phase difference   δy – δx 
between	two	components	of	the	polarization	vector	and	
present	 them	 as	 Stokes	 vector	 components	 [8]	 or	 any	
other	equivalent	quantities	describing	polarization	state,	
like	complex	amplitude	ratio	[9],	complex	polarization	
angle	 [10]	 or	 pair	 of	 any	 two	 angular	 parameters	 of	
polarization	ellipse	[8]	(Fig.	3).

It becomes necessary to transform the equations 
(6)	to	the	form	representing	the	evolution	of	measurable	
parameters,	 e.g.,	 the	 set	 of	 azimuthal	 angle	 ψ	 and	
the	 phase	 difference	 angle	 δ.	 	According	 to	 [8,	 11],	
between	 angular	 variables	 set	 (ψ,	 δ)	 and	 polarization	
vector	components	 	Ex and Ey,	 there	are	the	following	
relations:
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Fig. 3.  Angular parameters of polarization ellipse: a) azimuthal angle ψ and ellipticity angle χ; b) amplitude ratio α and 
phase difference δ

Source:	Authors.
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where	the	overbar	denotes	a	scalar	complex	conjugate.	
Taking	derivatives	of	both	equations	(7)	and	substituting	
proper	 relations	 from	 (6),	 one	 can	 obtain	 that	 angular	
variables	set	(ψ,	δ)	which	obeys	equations:
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are	 components	 responsible	 for	 birefringence.	 The	
obtained equations could be used to the analysis of 
polarimetric	measurement	for	any	type	of	the	plasma,	
as	 long	 as	 the	 conditions	 of	weak	 inhomogeneity	 (3)	
and	 weak	 anisotropy	 are	 fulfilled	 (5).	 Moreover,	 in	
the	 most	 common	 case	 of	 a	 non-adsorbing	 medium,	
like	 collisionless	 plasma,	 	Ai	 =	 0	 and	 equations	 (10)	
simplify to 
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2. Polarization state evolution in cold 
    magnetized plasma

Fig. 4.  Position of the external magnetic field B and unit 
vectors  ex and ey relative the ray propagation 
direction ez

Source:	Authors.

In	 this	 section,	 we	 apply	 equations	 (8)	 to	 the	
analysis	of	 the	angular	variable	 set	 (ψ,	δ)	evolution	 in	
weakly	anisotropic,	collisionless,	plasma.	In	a	coordinate	
system	 presented	 in	 Fig.	 4,	 where	 the	 magnetic	 field	
has longitudinal component Bz and	 two	 transverse	
components Bx and By,	 the	 electrical	 permittivity	 ε0 of 
the isotropic background medium is equal

                              ε0 1= − v                        (12)	

and the anisotropy tensor v has a form
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are standard plasma parameters connected with plasma 
frequency	 ωp,	 cyclotron	 frequency	 ωc and the beam 
frequency	 ω	 =	 2πc/λ.	Weak	 anisotropy,	 condition	 (5),	
requires

																						ν	<<	1	and		u  <<1																								(15)

		(8)

(11)
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or	equivalently

																		ω	>>	ωp  and  ω	>>	ωc	 											(16)

which are guaranteed by the choice of appropriate short 
wavelength of the electromagnetic beam. The conditions 
(16)	 also	 ensure	 that	 there	 is	 no	 total	 reflection	 of	 an	
electromagnetic	wave	at	a	cutoff	layer,	where	the	local	
refractive	index	goes	to	zero.	

Introducing	(12)–(14)	into	(10),	we	find	the	values	
of	vector	Ω: 
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frequently	 used	 in	 plasma	 polarimetry	 [12].	 The	 first	
two	components	of	vector		Ω	define	the	Cotton-Mouton	
effect,	which	 depends	 on	 two	 components	 of	 external	
magnetic	 field	 perpendicular	 to	 the	 beam	 propagation	
direction.	 The	 third	 component	 defines	 the	 Faraday	
Effect,	 proportional	 to	 the	 component	 of	 external	
magnetic	field	parallel	to	the	beam	propagation	direction.	
In	the	case	of	the	pure	Faraday	Effect,	when	propagation	
is	quasi-parallel,	equations	(11)	simplify	to
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So	the	evolution	of	the	polarization	ellipse	is	reduced	
to the rotation of its polarization plane at the Faraday 
angle 

 ∆ψ λ= ⋅ − ∫2 63 10 13 2. ||B N zed           (19)	

In	the	same	way,	for	pure	a	Cotton-Mouton	Effect	
in	 the	 case	 of	 quasi-perpendicular	 propagation,	 the	
polarization	state	evolution	is	in	the	change	of	its	phase	
difference angle:

      ∆δ = ⋅ −
⊥∫2 46 10 11 3 2. λ B N zed                 (20)

 In	both	cases,	polarimetric	measurement	could	be	
used to obtain information on the line integrated plasma 
density	when	the	magnetic	field	value	is	known	or	vice	
versa	 as	 a	 magnetic	 field	 detector	 for	 given	 plasma	
density	profile.	

In	 general	 case,	 when	 the	 magnetic	 field	 has	
both	 parallel	 and	 perpendicular	 component,	 both	
effects	 start	 to	 combine	 nonlinearly.	 In	 such	 a	 case,	
to obtain the information on plasma density or the 
magnetic	field	value	 the	 system,	 (11)	has	 to	be	 solved	
numerically by a sophisticated method of polarimetric 
data	inversion	[13,	14].	The	associated	calculations	are	
very	 time	consuming,	 and	 the	 analysis	of	polarimetric	
measurement	 is	 very	 hard.	 It	 is	 better	 to	 design	 the	
polarimetric system in such a way that only one effect 
takes	place.	Another	option	is	to	use	the	electromagnetic	
beam	with	plane	polarization	(δ	=	0)		of	the	azimuth	angle	
ψ	=	π/4	 	and	 the	proper	wavelength	value,	so	Faraday	
rotation	and	Cotton-Mouton	phase	shift	are	 low:	Δψ	<	
0.5	rad	and		Δδ	<	0.5	rad.	Interest	in	this	case	stems	from	
fact	 that,	 along	 the	whole	 path,	 sin cos2 1ψ δ( ) ≅ ( ) ≅
and tan tanδ ψ( ) ≅ ( ) ≅−1 2 0 .	 Under	 these	 conditions,	
system	(11)	could	be	written	as	
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Therefore,	both	Equations	(19)	and	(20)	are	correct,	
and there is only a second order coupling between 
Faraday and Cotton-Mouton Effects and the analysis is 
greatly	simplified.	

3. Probing beam wavelength

One	of	 the	most	 important	 tasks	 in	 the	 design	 of	
a polarimetric systems is the selection of proper probing 
beam	wavelength,	matched	to	the	length	L,	density			Ne 
and	magnetic	field	B	of	the	plasma	to	be	tested.	There	
are	 several	 constrains	 to	 be	 taken	 into	 account.	 Some	
of	 them	were	discussed	at	 the	article.	The	requirement	
of	 weak	 anisotropy,	 set	 by	 conditions	 (16),	 limits	 the	
maximum	wavelength	 from	 the	 top.	 The	 limit	 can	 be	
taken as follows:

1)	 ω	>	0.1ωp,
2)	 ω	>	0.1ωc.
Another	 restriction	 on	 the	 maximum	 wavelength	

comes	from	the	fact	that,	for	some	λ	value,	the	change	in	
the azimuthal angle ψ and the phase difference angle 		δ	
exceed		2π	and	the	measurement	becomes	ambiguously.	
To	avoid	such	a	situation,	the	F	and	CM	Effects	have	to	
be	smaller	than		2π	as	follows:

3)	 Δψ	<	2π,
4)	 Δδ	<	2π.



64 Journal of Machine Construction and Maintenance  |  PROBLEMY  EKSPLOATACJI  |  3/2017

On	the	other	hand,	the	effect	of	polarization	change	
has	to	be	measurable	with	sufficiently	high	signal	to	noise	
ratio.	As	the	Faraday	rotation	is	proportional	to	the	λ2 and 
phase	shift	to	λ3,	the	minimum	value	of	a	wavelength	is	
constraint.	It	is	reasonable	to	assume	that	measured	value	
of Faraday rotation angle and Cotton-Mouton phase shift 
has to be at least 0 1 0 002. .° ≅ rad:

5)	 Δψ	>	0.002,
6)	 Δδ	>	0.002.
It	has	to	be	pointed	out	that	mechanics,	optics,	and	

electronic	 (e.g.,	 minimum	 disturbance	 by	 vibrations	
and	refraction,	detectors	sensitivity)	also	force	specific	
restrictions	for	the	beam	wavelength,	but	this	is	beyond	
the	scope	of	the	present	article.	

Fig. 5. Constrains for polarimetric wavelength at tokamak JET plasma conditions

Source:	Authors.

Figure	5	presents	such	an	analysis	for	plasma	and	
magnetic	field	conditions	typical	for	JET	–	the	biggest	in	
the	world	thermonuclear	experimental	reactor.	At	Jet	the	
beam passes through the plasma on the distance L ≅ 2m,
plasma	 density	 varies	 during	 the	 experimental	 pulse	
within Ne ≅ ⋅ ⋅( )− −5 10 5 1018 20 3m 	 range,	perpendicular	
magnetic	 field	 is	 B⊥ ≅ 3T ,	 and	 parallel	magnetic	 field	
is B|| .≅ 0 2T .	The	existing	JET	polarimetric	diagnostic	
system relies on using far infrared laser (terahertz 
region	 in	 frequency	 domain)	 with	 a	 wavelength	 of	
195	 μm	 (Deuterated	 cyanide	 (DCN)	 laser).	 As	 it	 is	
clearly	 seen	 in	 Fig.	 5,	 the	 applied	 wavelength	 allows	
the	measurement	 in	 the	 assumed	 sensitivity	 limits	 for	
the	 whole	 plasma	 densities	 conditions.	 However,	 for	
densities Ne > ⋅ −5 1019 3m ,	 both	 Faraday	 rotation	 and	
Cotton-Mouton	phase	shift	exceed	0.5	rad	and	coupling	
between	both	effects	is	strong.	For	this	reason,	decreasing	
the	wavelength	to	119	µm	(methanol	laser)	seems	to	be	
advisable;	although,	for	low	plasma	densities,	only	the	

Faraday	Effect	 is	measurable,	but	at	medium	and	high	
densities,	 the	F	 and	CM	would	be	 in	 the	 range	where	
coupling between them is negligible and the analysis is 
straightforward.	

Summary

Differential	 equations	 for	 evolution	 of	 angular	
variables	 set	 (ψ,	 δ)	 are	 derived	 on	 the	 basis	 of	 quasi	
isotropic	approximation	of	the	geometric	optics	method.	
These equations can be integrated numerically for 
arbitrary	profiles	of	the	electron	density	and	for	arbitrary	
configurations	of	the	static	magnetic	field.	The	equations	
for	AVT	admit	exact	analytical	solutions	in	the	case	of	
pure Faraday and pure Cotton-Mouton Effects and 
approximate	solutions	by	the	polarimetric	data	inversion	
method or by the perturbation method in the case of the 
strong	coupling	between	both	effects.	Besides,	equations	
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for	evolution	could	be	applied	to	any	plasma	type	with	
parallel and perpendicular gradients of plasma density 
and	 magnetic	 field	 components,	 as	 long	 as	 plasma	
anisotropy	and	inhomogeneity	are	weak.	
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